
Vision4D 3.4

Application Note #35
StarDist: A Deep Learning Application

How to run StarDist within arivis Vision4D

The goal of this application note is to guide the user in working with
StarDist, the well-established deep learning application focused on cell /
nuclei detection, within the arivis Vision4D (V4D) environment. A pre-
defined StarDist neuronal network training is required. At the time of
writing only a 2D training is supported by V4D (3D coming soon).

More information about StarDist can be gathered from the following
articles:

• Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy
• Cell Detection with Star-convex Polygons

Please note that the recommended Anaconda Python package and all StarDist
modules (Python release) must already be installed on your workstation and fully
tested.

http://openaccess.thecvf.com/content_WACV_2020/papers/Weigert_Star-convex_Polyhedra_for_3D_Object_Detection_and_Segmentation_in_Microscopy_WACV_2020_paper.pdf
https://arxiv.org/abs/1806.03535

Application Note
«run Stardist within Vision4D»

2Vision4D 3.4

Preliminary Remarks

Vision4D is able to run deep learning applications such as StarDist using
external and arivisindependent Python libraries and tools produced by third
parties.
These tools must be installed by the user under his or her own
responsibility, strictly following the instructions in this document. arivis has
tested the setup protocol on several computers, however, due to the
different and not predictable hardware and software configurations of any
given computer system, the results may vary on a case by case basis.
Therefore, arivis declines any responsibility concerning the correct tools,
installation and setup on the individual user’s workstation. arivis cannot be
made responsible for any malfunctioning or failure of the deep learning
environment setup. arivis will not give technical support on the setup task
as well as on any deep learning application. Furthermore, arivis also
declines any responsibility about the validity of the scientific results
gathered from the deep learning application.

StarDist is reported to run well in multiple open source
environments such as Fiji/ImageJ, Qupath or Python (Using Python
editor like Jupyter Notebook, PyCham and Spider)

But what are the benefits of integrating StarDist directly inside of
your arivis Vision4D imaging software? In this document, we will
highlight the advantages of integrating open source analysis tools
such as StarDist directly in Vision4D.

Application Note Purpose

NOTE:
QuPath is cross-platform, user-friendly open source software for digital pathology and
whole slide image analysis, written using JavaFX.
ImageJ is public domain software for processing and analyzing scientific images, with
many derivatives and variants, including ImageJ2, Fiji, and others.
Jupyter Notebook, PyCham and Spider are Python editors

https://imagej.net/licensing/public-domain

Application Note
«run Stardist within Vision4D»

3

Application Overview

Vision4D 3.4

StarDist is a deep learning-based method for 2D and 3D nucleus
detection, developed & published by Martin Weigert and Uwe
Schmidt: github.com/stardist/

StarDist uses a cell detection method that predicts a shape
representation with star-convex polygons that is well-suited to
approximate the typically roundish shapes of cell nuclei in
microscopy images.

The 3D shape of a single object (cell nucleus) is described using a
star-convex polyhedron instead of polygons.

StarDist in a Nutshell

Application Note
«run Stardist within Vision4D»

4

Application Overview

Vision4D 3.4

The StarDist workflow is based on three main steps:

How does it work?

Objects Annotation

Neuronal Network
Training Creation

Sample Analysis

a. Objects Annotation
This task consists in manually drawing the objects shape over a set
of representative images (2D or 3D). The reference objects should
describe all their possible variation within the reference samples.
The annotations are then used to create a binary masked image
(Ground-truth). Both the annotations and the related binary masks
are used afterward by the training task to build the Neuronal
Network (training)

Application Note
«run Stardist within Vision4D»

5

Application Overview

Vision4D 3.4

How does it work? (continued)

A. Objects Annotation (continued)
The annotation task is a manual activity and therefore requires a lot of
time to be performed. The correct number of annotations must be
estimated in advance in order to get a reliable training. During the training
the annotations can be increased if required. The annotations range starts
from a minimum number of 200 samples, spread over 10 - 20 different
images, up to thousand (or even tens of thousand) in the more complex
cases.
In order to increase the number of samples without the need to acquire
new images, it is also possible to re-use the already existing images after
applying some operations like rotations, random flips or intensity shifts of
the original.

b. Neuronal Network Training Creation
This task takes either the sample images or the related masked images to
build the Neuronal Network. The training is a loop in which, in any cycle, 2
parameters are computed: the training loss and the validation loss.
The progress of training can be evaluated by comparing the training loss
with the validation loss. During training, both values should decrease
before reaching the minimal value, which should not change significantly
with further cycles. Comparing the validation loss development with the
training loss can give insights into the model’s performance. Decreasing of
both training and validation loss indicates that training is still necessary. If
the validation loss suddenly increases again, while the training loss
decreases towards zero, it means that the network is overfitting to the
training data.

The training loss
and the validation
loss vs the number
of cycles.

Application Note
«run Stardist within Vision4D»

6

Application Overview

Vision4D 3.4

How does it work? (continued)

b. Neuronal Network training creation (continued)
Basically, the training is based on math operations. These operations are
repetitive and time consuming and can easily be parallelized.
The usage of GPU resources improves the training performance in reducing
the total time. Working with the CPU only, a complex training can take 7 to
10 days of work, while using the GPU the total time is reduced to mere
hours (10 to 12).

c. Dataset Analysis
Once the Neuronal Network is ready, it can be used to analyze the samples.

Application Note
«run Stardist within Vision4D»

7

Application Overview

Vision4D 3.4

arivis Vision4D (V4D) is a modular software for working with multi-channel 2D,
3D and 4D images of almost unlimited size, independent of available RAM.
Many imaging systems, such as high speed confocal, light sheet / SPIM and 2-
photon microscope systems produce a vast amount of multi-channel data,
which V4D handles without constraints.
V4D allows the user to execute complex analysis tasks in automatic or batch
mode. It includes sophisticated pre-processing algorithm, multiple
segmentation approaches, including the machine learning tools, and powerful
data handling. Gigabytes, hundreds of Gigabytes or even Terabytes of dataset
can be quantified by V4D with a single task.

StarDist represents an advanced method to detect roundish objects such as cells
and nuclei, especially in crowded fields where the objects are overlapping, but it
is limited to these cases. The new frontiers of image analysis in life science need
the capability to analyze the complex iterations between biological structures.
V4D has the tools to satisfy these requirements. StarDist can be integrated in
the V4D analysis workflow and directly contribute to better detect its target
structures.
StarDist can be currently executed as a python script but, in the near future, it
will be available as a V4D pipeline operator, making its usage even more flexible
and powerful.

StarDist Script

V4D Python Editor

Why should I use StarDist within Vision4D?

NOTE:
Currently, Vision4D cannot internally generate the Neuronal Network model. This task is
based on math operations that can easily be parallelized. In order to optimize the process
and to reduce the time required. the support of GPU CUDA is needed.
Therefore, Vision4D will use a pre-trained model generated using other tools.
The script imports a pre-trained model from a defined folder.

Application Note
«run Stardist within Vision4D»

8

Application Overview

Vision4D 3.4

Application examples

1. Nuclei Quantification

StarDist script

V4D Python Editor

Nuclei Detection (Segments)

Nuclei features (e.g. Area, Roundness, Circumference)

Distribution of the Nuclei area

Nuclei features export to Excel

Why should I use StarDist within V4D? (continued)

Application Note
«run Stardist within Vision4D»

9

Application Overview

Vision4D 3.4

Application examples:

2. Nuclei Tracking

TP1

TP2

TP3

TP1

TP2

TP3

StarDist script

V4D Python Editor

Nuclei Detection (Segments)

V4D Pipeline

Import Nuclei

Nuclei Tracking

Why should I use StarDist within V4D? (continued)

Application Note
«run Stardist within Vision4D»

10

Application Overview

Vision4D 3.4

Application examples:

3. Nuclei Distribution (density map)

StarDist Script

V4D Python Editor

Nuclei Detection (Segments)V4D Pipeline

Import Nuclei

Nuclei Distrubution

Heatmap (Nuclei density distribution)

Why should I use StarDist within V4D? (continued)

Application Note
«run Stardist within Vision4D»

11

Application Overview

Vision4D 3.4

Why should I use StarDist within V4D? (continued)

Application examples:

4. Cells / Nuclei Compartmentalization

StarDist Script

V4D Python Editor

Nuclei DetectionV4D Pipeline

Import Nuclei

Membrane Detection

Membrane Compartment

Membrane Detection

Application Note
«run Stardist within Vision4D»

12

Application Overview

Vision4D 3.4

How to get StarDist working with V4D?

The StarDist python package is required to get it to work with V4D and must be
added to an existing python 3.x enviroment. We tested & strongly recommend
the Anaconda 3.x python package for the scope of this application.
Once the StarDist package has been correctly set up, V4D must also be
configured accordingly by changing the scripting preferences.

Application Note #29 and #30 describe how to install the Anaconda3 environment and the
StarDist package. Please refer to these for more details.

Set up V4D preferences

1. Start Vision4D (min. 3.4+ releases) and select
the Preferences item from the Extras menu.

2. On the left panel, click on the Scripting item.

3. Enable the Anaconda Enviroment:
Browse the “Anaconda3” installation
folder and select the StarDist
environment previously created.
By default, the new enviroments are
stored under the \envs folder located

in the Anaconda installation folder

e.g. C:\Anaconda3\envs\stardist

4. Run “Install arivis package” and »Test Environment» for compatibility:

Test completed successfully

Test failed

Application Note
«run Stardist within Vision4D»

13Vision4D 3.4

How to run the StarDist application?

arivis provides a free python script to run the StarDist algorithm inside of V4D.
The script allows to set the active channel on which the algorithm will be applied
as well as the time points (all or the active one) and the Z planes (full stack or a
range of planes). A new channel is created to store the labeled objects found by
StarDist.

Application Overview

Load the script
1. Open Python Script Editor.
From the «Extra» menu, select the «Script Editor»
item.

2. Open the Stardist_2D.py.

3. Set the Stardist_2D.py parameters.

INPUT_CHANNEL : Set the channel on which Stardist will be
applied. Count starts from 0
OUTPUT_CH_NAME : Set the name of the result channel

MODEL2D_PATH: Set the full path on which the pre-trained 2D model is stored
MODEL_NAME : Set the name of the 2D model.

CURRENT_TIME_POINT: True == Only the active time point will be processed.
False == All available time points will be processed.

FIRST_PLANE : Set the bottom plane from which the process is applied.
LAST_PLANE : Set the top plane from which the process is applied.
NOTE: If both are set to -1, the full stack is used

The pre-trained models are stored in a folder
structure as shown here:

4. Click ”Run Script” (F5)

arivis AG, Am Kabutzenhof 21,
18057 Rostock, Germany

Email : support@arivis.com

A startup package including the python script, the technical
instructions and the test image is available on request.
Contact your arivis local area sales manager to get more
information about how to get the python script mentioned
here.

Contact the arivis application support to receive additional
technical details about the topic described in the application
note, or how to adapt the application workflow to your
requirements.

“The quantitative analysis of the images represents the art of transforming a
visual sensation into its schematic and discrete form allowing its univocal
description, classification and mathematical and logical interpretation of its
spatial and temporal components”

